Wasserstoff wirkt als therapeutisches Antioxidans durch selektive Reduktion zellschädigender Sauerstoff-Radikale

Ikuroh Ohsawa¹, Masahiro Ishikawa¹, Kumiko Takahashi¹, Megumi Watanabe^{1,2}, Kiyomi Nishimaki¹, Kumi Yamagata¹, Ken-ichiro Katsura², Yasuo Katayama², Sadamitsu Asoh¹ & Shigeo Ohta¹

Akuter oxidativer Stress, der durch Ischämie bzw. Reperfusion (verminderte Blutversorgung bzw. Wiederdurchblutung) oder Entzündungen hervorgerufen wird, verursacht schwere Gewebeschäden, und anhaltender oxidativer Stress gilt als eine der Ursachen für eine große Zahl häufiger Krankheiten einschließlich Krebs. Wir zeigen hier auf, dass Wasserstoff (H₂) das Potenzial hat, als Antioxidans in präventiven und therapeutischen Anwendungen zu wirken. Wir induzierten (induzieren: auslösen, herbeiführen) akuten oxidativen Stress in kultivierten Zellen durch drei verschiedene voneinander unabhängige Methoden. H₂ reduzierte selektiv das Hydroxyl-Radikal (•OH), das am stärksten zellschädigend wirkende reaktive Sauerstoffspezies (ROS), und sorgte für einen effektiven Zellschutz. H₂ reagierte jedoch nicht mit anderen ROS, die physiologisch wichtige Funktionen aufweisen. Im Tiermodell benutzten wir Ratten, bei denen im Hirn durch eine fokale zerebrale Ischämie (verminderte Hirndurchblutung) und Reperfusion Schäden durch Abpufferung der Auswirkungen oxidativen Stresses. Somit kann Wasserstoff als effektives Antioxidans in der Therapie eingesetzt werden. Durch seine Fähigkeit, schnell durch Zellmembranen hindurchzudiffundieren, kann Wasserstoff mit zellschädigenden ROS in Kontakt kommen, sie neutralisieren und einen Schutz vor oxidativer Gewebeschädigung bilden.

Oxidativer Stress entsteht durch das starke zelluläre Oxidationspotenzial überschüssiger reaktiver Sauerstoffspezies (ROS) bzw. freier Radikale1-5 (Quellenangaben hochgestellt). Der größte Anteil von Superoxid-Anion-Radikalen (O2-•) wird in den Mitochondrien durch Austritt von Elektronen aus der Elektronentransportkette und den Citrat-Zyklus (ein Kreislauf biochemischer Reaktionen, der eine wichtige Rolle im Stoffwechsel (Metabolismus) aerober (O2 benötigender) Zellen von Lebewesen spielt) erzeugt⁶. O₂-• wird auch durch Enzymsysteme wie Oxidasen, einschließlich NADPH-Oxidase und Xanthin-Oxidase, erzeugt7. Superoxid-Dismutase wandelt O2-• in Wasserstoffperoxid (H2O2) um8, das entweder durch Glutathionperoxidase oder Katalase zu Wasser umgewandelt und somit detoxifiziert wird. Überschüssige O2-• reduzieren Übergangsmetallionen wie etwa Fe3+ und Cu2+ (siehe Quellenangabe 2), deren reduzierte Formen ihrerseits mit H₂O₂ reagieren können, um Hydroxyl-Radikale (•OH) durch die Fenton-Reaktion (Bildung von Hydroxyl-Radikalen bei der Reduktion von Wasserstoffperoxid durch Eisen(II): $Fe^{2+} + H_2O_2 = Fe^{3+} + \bullet OH$ + •OH) zu bilden. •OH ist das stärkste unter den reaktiven Sauerstoffspezies und reagiert unterschiedslos mit Nukleinsäuren, Lipiden und Proteinen. Es ist kein Detoxifikationssystem für •OH bekannt; deshalb ist das Abfangen bzw. Neutralisieren von •OH ein wichtiger antioxidativer Prozess9.

Trotz ihrer zellschädigenden Wirkungen spielen O2- und H2O2 bei niedrigen Konzentrationen physiologisch wichtige Rollen: Sie fungieren als regulatorische Signalmoleküle, die bei zahlreichen Signalübertragungskaskaden beteiligt sind. Sie regulieren auch biologische Prozesse wie etwa Apoptose (Zelltod), Zellwucherungen und -differenzierungen^{7, 10}. Bei höheren Konzentrationen wird H2O2 durch das Enzym Myeloperoxidase in Hypochlorsäure (HOCl) umgewandelt; Hypochlorsäure wirkt antibakteriell⁵. Das Stickoxid-Radikal (NO•), ein weiteres ROS, fungiert als Neurotransmitter und ist von wesentlicher Bedeutung für die Erweiterung der Blutgefäße¹¹. Zellschädigende Radikale wie etwa •OH müssen also neutralisiert werden, ohne die wichtigen biologischen Aktivitäten anderer physiologisch wichtiger ROS zu beeinträchtigen. Wir zeigen hier auf, dass molekularer Wasserstoff (H₂) die durch •OH herbeigeführten Zellschädigungen beheben kann, ohne die anderen physiologisch wichtigen ROS zu beeinträchtigen, und stellen zur Diskussion, dass H2 das Potenzial aufweist, als Antioxidans für präventive und therapeutische Anwendungen zu fungieren.

ERGEBNISSE

H₂ reduziert selektiv das Hydroxyl-Radikal (•OH) in kultivierten Zellen H₂ reduziert das •OH, das durch Radiolyse (Spaltung chemischer Bindungen unter Einwirkung ionisierender Strahlung) oder Photolyse (Spaltung eines Moleküls ausgelöst durch die Bestrahlung mit Licht) von Wasser erzeugt wird¹². Ob jedoch H₂ das •OH in lebendigen Zellen effektiv neutralisieren kann, wurde bisher nicht direkt untersucht. Da die durch spontane Erzeugung von •OH hervorgerufene Zellschädigung nicht stark genug ist, um feststellbar und somit messbar zu sein, lösten wir die Erzeugung von •OH (bzw. oxidativem Stress) in kultivierten PC12-Zellen (Tumorzelllinien von Ratten) aus. Dazu behandelten wir die Zellen mit einem mitochondrialen Atmungskettenkomplex III-Inhibitor, Antimycin A (ein Antibiotikum und Hemmstoff des Komplex III der Atmungskette¹³). Nach dieser Behandlung wandelte sich das •OH in diesen Zellen schnell in H₂O₂ um. Die Hinzufügung von Antimycin A erhöhte die Konzentrationen an O2-• und H2O2, gemessen an den Fluoreszenz-Signalen, die jeweils von den oxidierten Formen von MitoSOX (Abb. 1a) und 2,7-Dichlorodihydrofluorescein (Fluoreszenzfarbstoff DCFH, Zusatz-Abb. 1) abgegeben wurden. Wir lösten H2 und O2 wie im Abschnitt "Methoden" beschrieben im Medium und hielten über 24 Stunden die Konzentration von H2 aufrecht (Zusatz-Abb. 2). Das im Kulturmedium gelöste H₂ verringerte nicht die MitoSOX- und DCFH-Signale in den Zellen (Abb. 1a,b und Zusatz-Abb. 1). H₂ verringerte auch nicht die Gleichgewichtskonzentration von NO• (Zusatz-Abb. 1). Im Gegensatz dazu verringerte die Behandlung mit H₂ signifikant die Konzentration von •OH, gemessen an den Fluoreszenz-Signalen, die von der oxidierten Form von 2-[6-(4'-Hydroxy)Phenoxy-3H-Xanthen-3-on-9-yl]-Benzoat (HPF bzw. "HPF-Signal") abgegeben wurden^{14,15} (Abb. 1c,d). Als wir die Zellen unter Abwesenheit von H2 dem Antimycin A aussetzten (30 µg/ml), verstärkten sich die HPF-Signale sowohl in der Region um den Zellkern als auch im Zytoplasma (gesamter Zellinhalt), und zwar vermutlich, weil H2O2 aus den Mitochondrien diffundierte, um •OH zu bilden. Auffallend dabei war, dass H2 die Konzentration an •OH in der Region um den Zellkern verringerte (Abb. 1c).

Erhalten am 25. September 2006; angenommen am 15. März 2007; online veröffentlicht am 7. Mai 2007; doi:10.1038/nm1577

¹Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki City 211-8533, Japan. ²Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan. Bitte richten Sie Ihren Schriftverkehr an S.O. (ohta@nms.ac.jp).

ARTICLES

Abb. 1: Im Medium gelöster molekularer Wasserstoff reduziert selektiv Hydroxyl-Radikale in kultivierten Zellen. (**a,b**:) PC12-Zellen wurden im Medium mit bzw. ohne 0,6 mM H₂ inkubiert (hier: mit Wasserstoff-Gas behandelt; sonst: bebrütet, vermehrt) und mit dem Antibiotikum Antimycin A (30 µg/ml für 30 min.) behandelt, um die Produktion von O₂·• auszulösen. Danach erfolgte eine Behandlung mit 0,5 µM MitoSOX. Repräsentative Fluoreszenz-Abbildungen von mit MitoSOX behandelten Zellen wurden durch konfokale Laser-Raster-Mikroskopie (mit dem Olympus FV300) erhalten. Die MitoSOX-Fluoreszenz wurde aus 100 Zellen bei jedem eigenständigen Experiment quantifiziert (n = 5). (c:) Repräsentative konfokale Laser-Raster-Mikroskopieaufnahmen der Fluoreszenz des •OH-Markers HPF wurden 30 Minuten nach der Zugabe von Antimycin A angefertigt. Pfeile und Pfeilspitzen (Darstellungen rechts) weisen jeweils auf die Zunahme bzw. Abnahme der HPF-Signale in der Region um den Zellkern hin. (d:) HPF-Fluoreszenz in den mit Antimycin A behandelten Zellen mit bzw. ohne 0,6 mM H₂ wurde aus 100 Zellen

quantifiziert (n = 4). **P < 0,01, ***P < 0,001. (e:) 30 Minuten nach Zugabe von Antimycin A (10 µg/ml) mit bzw. ohne H₂ (0,6 mM) wurden die Zellen für eine Zeitdauer von 10 Minuten mit 1 µM MitoTracker Green ("MTGreen") und 100 nM Tetramethylrhodamin-Methylester (TMRM) inkubiert und dann fotografiert. Die beiden Bilder wurden dann überlagert ("Merge") bzw. zusammengefügt. (ft) Zellen wurden mit 4,5 g/l 2-Deoxy-D-Glucose (einem Glycolyse-Inhibitor, Hemmer der Zuckerspaltung von Glucose) und 1 mM Pyruvat vorbehandelt, und die relativen zellulären ATP-Konzentrationen wurden nach Zugabe von 30 µg/ml Antimycin A quantifiziert. Die ATP-Konzentrationen von Zellen, die nicht mit Antimycin A behandelt wurden, wurden auf 100% festgesetzt (n = 3). *P < 0,05, **P < 0,01. Maßstabsbalken (jeweils unten rechts, weiß): 100 mm in **a**; 50 mm in c; 20 mm in **e**. Die Balkendiagramme zeigen die durchschnittlichen Standardabweichungen ("mean ± SD").

С

ŕ

Nach der Behandlung mit Antimycin A verhinderte H2 die Abnahme des mitochondrialen Membranpotenzials, gemessen an der Fluoreszenz von Tetramethylrhodamin-Methylester (TMRM), die vom mitochondrialen Membranpotenzial abhängig ist, wohingegen die Fluoreszenz-Signalstärken von MitoTracker Green (MTGreen), die unabhängig vom Membranpotenzial sind, unverändert blieben (Abb. 1e). Dies wies darauf hin, dass H₂ einen effektiven Schutz der Mitochondrien gegen •OH bildet. Mit H2 behandelte Zellen hatten ein normales Aussehen, wohingegen nicht mit H2 behandelte Zellen geschrumpft waren und abnormale runde Formen aufwiesen (Abb. 1e). Einhergehend mit dieser Schutzwirkung verhinderte H₂ auch eine Abnahme der zellulären Konzentrationen an in den Mitochondrien erzeugtem ATP (Abb. 1f). Die Tatsache, dass H2 eine schützende Wirkung auf Mitochondrien und Zellkern-DNA ausübte, lieferte den Beweis dafür, dass H₂ die meisten Zellmembranen passierte und in die Organellen (funktionelle Systeme in einer Zelle, die von einer Lipidmembran umschlossen sind) diffundierte.

Im Medium gelöstes H_2 schützt kultivierte Zellen vor Hydroxyl-Radikalen (*OH)

Wir platzierten PC12-Zellen in einem Kulturmedium, das H2 und O2 enthielt, und lösten gleichzeitig durch Hinzufügung von Antimycin A oxidativen Stress aus. 24 Stunden nach Einleitung der ROS mit Antimycin A beobachteten wir, dass H2 die Zellkern-DNA vor Oxidation zu schützen schien, wie sich an den niedrigeren Konzentrationen oxidierten Guanins (8-OH-G) zeigte¹⁶ (Abb. 2a,b). H₂ verringerte auch die Konzentration von 4-Hydroxyl-2-Nonenal (HNE), einem Endprodukt der Lipidperoxidation¹⁷ (Abb. 2c,d), was darauf hinweist, dass H₂ Lipide vor Peroxidation schützt. Zusätzlich schützte das im Medium gelöste H2 Zellen vor dem Zelltod, abhängig von der Dosierung (Abb. 2e,f). Als wir dem zuvor mit H2 gesättigtem Medium das H2 entzogen, war der Schutzeffekt nicht mehr vorhanden (Abb. 2f), was darauf hinweist, dass der beobachtete Effekt nicht auf eine Reaktion des H2 mit dem Medium zurückzuführen war. Ebenso konnten wir nachweisen, dass H2 die Zellviabilität (Vitalität und Lebensfähigkeit der Zelle) schützte, wozu wir zwei methodische Ansätze wählten: einen modifizierten MTT-Test (WST-1-Test, Test zur Bestimmung der Zellviabilität) und eine Messung der Entweichung bzw. Leckage zellulärer Laktatdehydrogenase (LDH) aus beschädigten Zellen (Zusatz-Abb. 3). Um die Möglichkeit auszuschließen, dass der Schutzeffekt des H2 auf eine Reaktion mit Antimycin A zurückzuführen war, induzierten wir ROS durch Hinzufügung von Menadion (Vitamin K 3), einem Inhibitor

© 2007 Nature Publishing Group http://www.nature.com/naturemedicine

(Hemmer), der auf den mitochondrialen Komplex I (ein Verbund von 40 Proteinen in der inneren Membran der Mitochondrien) einwirkt, und konnten beobachten, dass H₂ auch in diesem System eine Schutzwirkung auf die Zellen ausübte (Zusatz-Abb. 3). Um zu überprüfen, ob H₂ eine oxidative Schutzwirkung vor •OH ausübt, behandelten wir die Zellen zunächst mit Cu²⁺ und setzten sie dann einer Ascorbatlösung aus, um das intrazelluläre Cu²⁺ zu Cu⁺ zu reduzieren, welches dann seinerseits die Produktion von •OH aus zellulärem, endogen produziertem H₂O₂ katalysiert (anregt). Diese Behandlung induzierte in erster Linie •OH innerhalb der Zellen (durch die Fenton-Reaktion), womit direkt nachgewiesen werden konnte, dass H₂ eine Schutzwirkung gegen zelluläre •OH ausübt (**Abb. 2g,h**).

"Spin-Trapping" erkennt und identifiziert ein freies Radikal, das durch $H_2\,\text{reduziert}$ wird

Um die freien Radikalspezies zu bestimmen, die H₂ reduziert, studierten wir die Auswirkungen von H₂ auf Elektronenspinresonanz- (ESR) Signale von sog. "Spin-Trapping-Reagenzien" (Spinfallen-Reagenzien zur Erkennung und Identifizierung kurzlebiger Radikale). Dazu produzierten wir •OH durch die zelluläre Fenton-Reaktion und semiquantifizierten die zellulären Konzentrationen von •OH durch Spin-Trapping unter Verwendung von 5,5-Dimethyl-1-pyrrolin-N-oxid (DMPO). Die ESR-Messungen wiesen darauf hin, dass die H₂-Behandlung tatsächlich zu einer Verringerung der Signale von ·DMPO-OH, abgeleitet von •OH, führten (**Abb. 3a-c**).

Als wir außerdem die Produktion von O₂^{••} durch Behandlung von Zellen mit Antimycin A in Anwesenheit von DMPO induzierten, konnten wir multiple ESR-Signale beobachten¹⁸. Diese Signale schienen sich aus jenen der DMPO-OH- und DMPO-H-Radikale zusammenzusetzen (**Abb. 3d–f**). Das DMPO-H-Radikal wird vom Wasserstoff-Radikal (H-) abgeleitet, das durch Porphyrine (organisch-chemische Farbstoffe) induziert werden kann. Um die Signalverringerungen durch H₂ zu visualisieren, nahmen wir eine Differenzspektroskopie vor (Messmethode, bei der eine Strahlung nach einer bestimmten Eigenschaft wie Energie, Wellenlänge, Masse, Absorptionsdifferenzen, etc. zerlegt wird). Dabei stellten wir fest, dass nur von •OH abgeleitete Signale eine Verringerung durch die H₂-Behandlung erfuhren (**Abb. 3e**). Diese Ergebnisse weisen deutlich auf die selektive Reduktion von zellulären •OH durch die H₂-Behandlung hin.

Abb. 2: Molekularer Wasserstoff schützt kultivierte PC12-Zellen durch Abfangen bzw. Neutralisieren von Hydroxyl-Radikalen. (**a–d**:) PC12-Zellen wurden mit 10 µg/ml Antimycin A, mit (+) bzw. ohne (-) 0.6 mM H₂, für 24 Stunden in einem geschlossenen Kolben inkubiert und immungefärbt mit Antikörpern zu 8-OH-G oder HNE. Die Fluoreszenz-Signale als Reaktion auf 8-OH-G und HNE wurden quantifiziert, indem 100 Zellen bei jedem eigenständigen Experiment verwendet wurden (n = 4). *P < 0,05, **P < 0,01. (**e**:) Phasen-kontrastaufnahmen der PC12-Zellen 24 Stunden nach der Behandlung mit Antimycin A, mit (+) bzw. ohne (-) 0,6 mM H₂. Die Pfeile weisen auf die toten Zellen hin. (**f**:) Die Konzentration überlebender Zellen wurde durch manuelles Zählen der Zellen bestimmt (siehe "Methoden"; n = 4). *P < 0,05, **P < 0,01 (verglichen mit 0 µM H₂). (g:) PC12-Zellen wurden nitrazellulären •OH ausgesetzt, die durch die Fenton-Reaktion produziert wurden, und mit bzw. ohne 0,6 mM H₂ behandelt. Die Zellen wurden mit 1 mM CuSO₄ inkubiert, gewaschen und für eine Stunde 0,1 mM Ascorbat (Vit. C) ausgesetzt, um intrazelluläres Cu²⁺ zu Cu⁺ zu reduzieren (**siehe "Ergänzende Methoden"**). Die Zellen wurde mit Propidiumjodid (PI, für tote Zellen) und Hoechst 33342 angefärbt, um die Zellkerne sichtbar zu machen. (**h**:) Die Konzentration überlebender Zellen wurde wie unter **f** durch manuelles Zählen der Zellen (n = 5) bestimmt. *P < 0,05, **P < 0,01. Maßstabsbalken: 50 mm in **a,c,e**; 100 mm in **g**. Die Balkendiagramme zeigen die durchschnittlichen Standardabweichungen.

$\rm H_2$ reduziert selektiv Hydroxyl-Radikale (*OH) und Peroxynitrit (ONOO-) in zellfreien Systemen

Als nächstes konnten wir in einer reinen Lösung nachweisen, dass das HPF-Fluoreszenz-Signal verwendet werden kann, um die Reduktion von •OH durch H₂ während der anhaltenden •OH-Produktion mittels der Fenton-Reaktion zu überwachen. Unter diesen Umständen verhinderte H₂ Erhöhungen der HPF-Signale dosisabhängig (**Abb. 4a–c**). Doch als wir die Mischung einer Lösung anfertigten, die H₂ mit HPF enthielt, das mit •OH voroxidiert war, gab es keine Verringerung der Fluoreszenz-Signale vom oxidierten HPF (Daten hier nicht gezeigt), was dafür spricht, dass H₂ direkt mit •OH reagiert.

Als nächstes untersuchten wir das Reaktionsvermögen von H_2 mit anderen ROS oder reaktiven Stickstoffspezies (RNS). Wir fertigten eine Lösung von H_2O_2 und Peroxynitrit

(ONOO⁻) durch Verdünnung der jeweiligen Stammlösungen an, sowie O₂⁻ • durch die Enzymreaktion von Xanthin-Oxidase mit Xanthin, und NO• durch die spontane Reaktion von 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazen (NOC7) in zellfreien Systemen (**siehe "Ergänzende Methoden"**). H₂ reduzierte ONOO⁻ (**Abb. 4d**) geringfügig, doch es gab keine Reduktion von H₂O₂, NO• und O₂^{-•} (**Abb. 4e–g**). In zellfreien Experimenten untersuchten wir, ob H₂ die oxidierten Formen von Biomolekülen reduziert, die bei metabolischen Oxidation-Reduktions-Reaktionen beteiligt sind. Bei Raumtemperatur und neutralem pH-Wert reduzierten mit H₂ gesättigte Lösungen nicht die oxidierten Formen der Coenzyme Nicotinamid-Adenin-Dinukleotid (NAD+) und Flavin-Adenin-Dinukleotid (FAD) oder die oxidierte Form des Proteins Cytochrom c (Daten nicht gezeigt). Daraus leiten wir ab, dass H₂ keinen Einfluss auf den Metabolismus ausübt, der bei Oxidation-Reduktions-Reaktionen beteiligt ist, ebenso wenig wie auf die Konzentrationen von O₂-•, H₂O₂ und NO•, die allesamt wichtige Rollen bei der Signalübertragung spielen.

H₂ schützt Neuronen vor in-vitro-Ischämie und Reperfusion

Wir induzierten auch oxidativen Stress in einer Primärkultur mit neokortikalen Zellen (Zellen der Großhirnrinde)¹⁹ unter stärker ausgeprägt physiologischen Bedingungen. Es ist allgemein bekannt, dass ein schneller Übergang von einem ischämischen Zustand zu einem der Wiederherstellung der Blutversorgung (Reperfusion) in Schädigungen durch oxidativen Stress resultiert²⁰. Zur Nachahmung der Ischämie setzten wir neokortikale Zellen für 60 Minuten einem Sauerstoff-Glucose-Entzug (Oxygen Glucose Deprivation, OGD) unter Stickstoff- bzw. Wasserstoff-Gas aus, gefolgt von einer Reperfusion mit einem Medium, das O₂ und Glucose enthält.

Die HPF-Fluoreszenz-Signale zeigten, dass 10 Minuten nach Ende des OGD-Prozesses und der nachfolgenden Reperfusion die Konzentrationen von •OH deutlich erhöht waren, wenn H₂ abwesend war, sich jedoch bei Anwesenheit von H₂ signifikant verringerten (**Zusatz-Abb. 4**). 24 Stunden nach Ischämie und Reperfusion erhöhte H₂ die (Über)lebenskraft der Neuronen (**Zusatz-Abb. 4**), was darauf hinweist, dass H₂ die Neuronen effektiv vor durch oxidativen Stress induzierten Zelltod schützt.

Inhalation von H2-Gas schützt vor Hirnschädigung durch Reperfusion

Um die therapeutische Anwendbarkeit von H₂ als ein Antioxidans zu untersuchen, verwendeten wir ein Tiermodell, mit dem bei Ratten eine künstliche Ischämie induziert wurde. Während der zerebralen Ischämie und Reperfusion werden ROS produziert, die eine der Hauptursachen für Hirnschädigungen sind^{21,22}. Im Tiermodell induzierten wir eine fokale zerebrale Ischämie bei Ratten durch Okklusion (Verschluss) der mittleren Zerebralarterie (Hirnarterie,

nature. medicine

MCA) für 90 Minuten und leiteten dann die Reperfusion für 30 Minuten ein23. Bei drei der vier Ausgangsbedingungen inhalierten die Ratten ein Gemisch aus H2- und Distickstoffmonoxid-Gas (N2O) zur Einleitung einer Narkose während des gesamten 120 Minuten dauernden Prozesses (die Volumenverhältnisse von H₂, O₂ und N₂O waren a) 1% : 30% : 69%; b) 2% : 30% : 68% und c) 4% : 30% : 66%). Bei der vierten Ausgangsbedingung war H2 abwesend; hier betrugen die Volumenverhältnisse von H₂, O₂ und N₂O 0% : 30% : 70%. Wir nahmen eine sorgfältige Überprüfung der physiologischen Parameter während der Experimente vor (siehe "Methoden") und stellten keine signifikanten Veränderungen als Resultat der Inhalation von H2 fest (Ergänzungstabelle 1).

Wir stellten auch keinen signifikanten Einfluss auf den zerebralen Blutfluss fest, gemessen am Doppler-Effekt²⁴ (Zusatz-Abb. 5). Die Konzentration des im arteriellen Blut gelösten H2 erhöhte sich durch Inhalation von H₂ proportional zur inhalierten Menge; die Konzentration des im venösen Blut gelösten H2 war geringer als im arteriellen Blut, was darauf schließen lässt, dass H2 vom Gewebe aufgenommen wurde (Abb. 5a).

Einen Tag nach der MCA-Okklusion nahmen wir eine Anfärbung von Hirnschnitten mit 2,3,5-Triphenyltetrazoliumchlorid (TTC) vor, einem Substrat (Trägerstoff) für mitochondriale Respiration (Atmung) (Abb. 5b). Wir überprüften das Infarktvolumen durch Untersuchung der Anfärbung von Hirnregionen (weiße Färbung weist auf einen Infarkt hin, Abb. 5b,c) und

Abb. 3: "Spin-Trapping" erkennt und identifiziert die freien Radikale, die durch H2 reduziert werden. (a:) Standard-Elektronenspinresonanz- (ESR)-Signale des DMPOOH-Radikals wurden durch Einfangen von •OH mit einem Spinfallen-Reagenz (DMPO; Details im Abschnitt "Ergänzende Methoden") bezogen. (b,c:) PC12-Zellen wurden für 30 Minuten bei einer Temperatur von 37°C mit 0,1 M DMPO und 2 mM CuSO4 und mit bzw. ohne 0,6 mM H₂ präinkubiert. Nach Entfernung dieses Mediums wurden die Zellen für 5 Minuten bei einer Temperatur von 23°C mit 0,2 mM Ascorbat und 0,1 mM H2O2 behandelt, um •OH zu produzieren, und dann zur Messung der ESR-Signale in eine flache Küvette gegeben. Die Höhe der roten Rechtecke reflektiert die Intensität des Signals. (d:) Die DMPO-OH- und DMPO-H-Radikale¹⁸ und ihre korrespondierenden ESR-Signale werden hier veranschaulicht. (e,f:) PC12-Zellen wurden für 7 Minuten bei einer Temperatur von 23° C in phosphatgepufferter Salzlösung (PBS) inkubiert, die 0,1 M DMPO und 30 $\mu\text{g/ml}$ Antimycin mit bzw. ohne 0,6 mM H2 enthält, und dann zur Messung des ESR-Signals in eine flache Küvette gegeben. (g:) Ein Differenzspektrum wurde durch Subtraktion des Spektrums in f von dem in e bezogen, um die durch die Behandlung mit H₂ verringerten Signalstärken zu visualisieren. Die mit (*) versehenen Spitzenwerte weisen auf DMPO-OH-Signale hin, die von •OH abgeleitet wurden. Die mit (o) versehenen Spitzenwerte weisen jeweils auf DMPO-OH- und DMPO-H-Signale hin (a, b, d, e und g).

stellten eine deutliche Abnahme des Infarktvolumens in Abhängigkeit der Menge an H₂ fest, wobei eine Konzentration von 2 bis 4% H₂ die deutlichsten Effekte hervorbrachte (Abb. 5c). Wir konnten auch beobachten, dass H2 seine Effekte nur hervorbrachte, wenn das Gasgemisch während der Reperfusions-Phase inhaliert wurde; wurde H2 während der Ischämie-Phase inhaliert, gab es keine signifikante Abnahme des Infarktvolumens (Abb. 5d,e). Zum Vergleich prüften wir zwei weitere Verbindungen: Edaravon (Wirkstoff zur Behandlung von degenerativen Erkrankungen des motorischen Nervensystems, in Japan als ROS-Fänger zur Behandlung von Hirninfarkten zugelassen²⁵) und FK506 (in den USA in klinischen Studien zur Behandlung von Hirninfarkten eingesetzt²⁶). H₂ zeigte bei der Linderung oxidativer Schäden eine höhere Effektivität als Edaravon und die gleiche Effektivität wie FK506 (Abb. 5c). Diese Resultate weisen auf das therapeutische Potenzial von H₂ hin.

Inhalation von H2-Gas unterbindet fortschreitende Schädigungen

Eine Woche nach der MCA-Okklusion erhöhte sich die Differenz im Infarktvolumen zwischen unbehandelten und mit H2 behandelten Ratten, verglichen mit den Ergebnissen einen Tag nach der Okklusion (Abb. 6a,b). Das Verhalten einer jeden Ratte, das nach einem neurologischen Punktesystem eingestuft wurde27, zeigte, dass die Inhalation von H2 während der Ischämie und der Reperfusion die Bewegungsfähigkeit verbesserte (Abb. 6c). Während außerdem das Körpergewicht und die Körpertemperatur von Ratten, die kein H2 inhalierten, langsam abnahm, stellte sich beides bei den Ratten, die H2 inhalierten, schließlich wieder her (Abb. 6d,e). Somit konnte nachgewiesen werden, dass H₂ nicht nur die anfängliche Hirnschädigung unterband, sondern auch fortschreitende Schädigungen.

Wir untersuchten durch H2 herbeigeführte molekulare Veränderungen 12 Stunden, 3 Tage bzw. 7 Tage nach der Okklusion, indem wir eine Anfärbung von Hirnschnitten mit Antikörpern zu 8-OH-G vornahmen, um das Ausmaß der Oxidation von Nukleinsäuren zu messen (Zusatz-Abb. 6), sowie mit Antikörpern zu HNE, um das Ausmaß der Lipidperoxidation zu messen

Abb. 4: Molekularer Wasserstoff in Lösung neutralisiert Hydroxyl-Radikale bei 23°C und einem pH-Wert von 7,4 in zellfreien Systemen. (a,b:) Die Fenton-Reaktion, die Hydroxyl-Radikale produziert, wurde durch Hinzufügung von H2O2 eingeleitet (bis zu einer Endkonzentration von 5 µM) in einer geschlossenen Küvette bei 23°C und bei schonendem Rührvorgang (siehe "Ergänzende Methoden"). Die Konzentrationen an •OH in Gegenwart unterschiedlicher Konzentrationen von H2 in Lösung wurden auf ihre HPF-Fluoreszenz-Signale untersucht. (a:) Repräsentative zeitliche Verlaufsspuren der HPF-Fluoreszenz bei verschiedenen Konzentrationen von H2. Die Grundlinien ("Baseline") 1 und 2 zeigen HPF-Fluoreszenz (in Gegenwart von 0,8 mM H2) unter Abwesenheit von H₂O₂ (Grundlinie 1) und unter Abwesenheit von Eisenperchlorat (Grundlinie 2). (b:) Durchschnittliche Standardabweichungen von anfänglichen Steigerungsraten der HPF-Fluoreszenz (vier eigenständige Experimente). (c-g:) Konzentrationen von •OH und zwei reaktiven Stickstoffspezies (RNS: Stickoxid (NO•) und Peroxynitrit (ONOO-), noch verblieben nach Inkubation mit 0,6 mM H2 bei 23°C (Details im Abschnitt "Ergänzende Methoden"). Vitamin C (Vit. C) und Superoxid-Dismutase (SOD) wurden als Positivkontrollen verwendet. Die erzeugten Signale unter Abwesenheit von H2 (CTL) wurden auf 100% festgesetzt. Die Daten repräsentieren durchschnittliche Standardabweichungen (n = 6). *P < 0.05, ***P < 0.001.

NBT-Diformazan: oxidierte Form von Nitroblau-Tetrazolium (NBT, ein Detektor von O2+,). DAF-2: Diaminofluorescein-2 (ein Detektor von NO+).

а 40 H₂ in blood (ng/ml) 20 0 v v Α v Α А 0 2 4 H₂ (%) b H₂ С 225 0% 2% 200 175 Infarct volume (mm² 150 125 100 75 50 25 0 0124EF 0124EF 0124EF H₂ (%) H₂ (%) H₂ (%) Striatum Cortex Total 225 e 200 175 (mm³) d 150 MCA Reperfusion Infarct volume 125 (90 min) (30 min) 100 75 of H₂ gas inhalation 120 min 50 A в Last 35 min 25 0 First 85 min ABC ABC ABC H₂ (%) 0 2 0 2 0 2 Striatum Cortex Total

(Zusatz-Abb. 6). Bei jedem dieser beiden oxidativen Marker stellten wir eine deutliche Reduktion der Anfärbung bei mit H₂ behandelten Ratten, im Vergleich zu unbehandelten Ratten, fest. Wir nahmen auch eine Anfärbung identischer Regionen des Hirns mit Antikörpern zu Iba1 (einem Marker für Mikrogliazellen, Immunzellen des zentralen Nervensystems)²⁸ und Antikörpern zu GFAP (saures Gliafaserprotein, ein hirnspezifisches Protein) vor, die jeweils spezifisch für aktivierte Mikrogliazellen bzw. Astrozyten (sternförmige Zellen um Gehirnneuronen) sind (Abb. 6f,g und Zusatz-Abb. 6). Wir stellten eine deutlich ausgeprägte, von H₂ abhängige Abnahme der Anhäufung von Mikrogliazellen fest, was auf eine Entzündung und einen Umbauprozess hinweist. Zusammengefasst zeigen diese Resultate, dass H₂ oxidativen Stress deutlich senken und Hirnschädigungen unterbinden kann.

DISKUSSION

Diese Studie weist nach, dass molekularer Wasserstoff in vitro ROS selektiv reduzieren kann. Da •OH und ONOO- sehr viel reaktiver als andere ROS sind14, ist es naheliegend, dass H2 nur mit den stärksten Oxidantien eine Reaktion eingeht. Dies ist von Vorteil für medizinische Maßnahmen und Verfahren, da es bedeutet, dass die Verwendung von H2 keine ernsthaften oder unerwünschten Nebenwirkungen haben sollte. Es ist anzunehmen, dass H2 als Antioxidans mild genug ist, keine Störungen bei metabolischen Oxidation-Reduktions-Reaktionen oder bei ROS, die eine wichtige Rolle bei der Übertragung von Zellsignalen spielen, hervorzurufen — im Gegensatz zu einigen antioxidativen Nahrungsmittelergänzungen mit stark reduktiver Reaktionsfähigkeit, die die Mortalität (Sterblichkeit) möglicherweise durch negative Einwirkung auf wesentliche körperliche Abwehrmechanismen erhöhen29.

H2 hat als potenzielles Antioxidans eine Reihe von Vorteilen: Es neutralisiert effektiv ${}^{\circ}$ OH in lebenden Zellen und, anders als die meisten be-

Abb. 5: Die Inhalation von Wasserstoff-Gas übt einen wirksamen Schutz gegen Schädigungen, hervorgerufen durch Ischämie bzw. Reperfusion, aus. (a:) Im Tiermodell inhalierten Ratten für eine Stunde H2 und 30% O2 unter Narkose mit N2O und Halothan (Narkosegas). Die Konzentrationen an H2 in arteriellem (A) und venösem (V) Blut wurden gemessen, und die Menge an H_2 wurde mittels Gas-Chromatographie untersucht. (b:) Bei Ratten wurde eine Okklusion der mittleren Zerebralarterie (MCA) vorgenommen. Während des 120-minütigen Ablaufs wurde die angegebene Konzentration des Gasgemischs von den Ratten inhaliert. Einen Tag nach der MCA-Okklusion wurde das Vorderhirn in sechs koronale sequenzielle (aufeinanderfolgende) Abschnitte geteilt und die Hirnschnitte mit dem mitochondrialen Respirationssubstrat TTC angefärbt. Maßstabsbalken: 5 mm. (c:) Infarktvolumina des Hirns wurden in den Hirnschnitten berechnet. "E" (gelb) und "F" (orange) stehen für die Behandlung mit Edaravon und FK506 (n = 6). *P < 0,05, **P < 0,01, ***P < 0,001, verglichen mit 0% H₂. ##P < 0,01, ###P < 0,001, verglichen mit 2% H2. (d:) Schaubild des Experiments mit drei verschiedenen Zeiträumen, über die Wasserstoff-Gas (2%) inhaliert wurde. (e:) Infarktvolumina des Hirns bei verschiedenen Zeiträumen, über die H₂ inhaliert wurde (Berechnung wie in c) (n = 6). *P < 0,05, **P < 0,01, ***P < 0,001, verglichen mit 0% H₂. #P < 0,05, ###P < 0,001, verglichen mit einer 120-minütigen Behandlung. A, B und C repräsentieren die verschiedenen Zeiträume der Inhalation von H2-Gas (wiedergegeben in d). Balkendiagramme repräsentieren die durchschnittlichen Standardabweichungen.

ARTICLES

kannten Antioxidantien, die nicht im Stande sind, mit Erfolg zu Organellen vorzudringen30, weist es vorteilhafte Verteilungsmerkmale auf: Es kann Biomembranen durchdringen und ins Cytosol (flüssige Bestandteile des Zytoplasmas) sowie in die Mitochondrien und den Zellkern diffundieren. Trotz der nur moderaten Reduktionsaktivität von H2 könnte seine Eigenschaft, als Gas rasch in alle Bereiche der Zelle zu diffundieren, es zu einem hocheffektiven Mittel zur Reduktion zellschädigender Radikale machen. Seine Fähigkeit, die Zell-DNA und die Mitochondrien effektiv zu schützen, weist darauf hin, dass es das Risiko von Erkrankungen durch ungesunde Lebensführung und das Krebsrisiko verringern könnte.

H₂ bewirkte eine deutliche Verringerung von oxidativem Stress und unterband Hirnschäden, die von induzierter Ischämie bzw. Reperfusion hervorgerufen wurden. Die Inhalation von H₂-Gas war deutlich wirkungsvoller als eine zur Zeit zugelassene Behandlung von Hirninfarkten und verminderte auch durch Ischämie und Reperfusion hervorgerufene Leberschäden (K. Fukuda, S.A., M.I., Y. Yamamoto, I.O. und S.O., unveröffentlichte Daten). Diese Ergebnisse weisen darauf hin, dass die vorteilhaften Effekte von H₂ nicht auf Hirnverletzungen beschränkt sind, sondern auch zur Behandlung von Verletzungen in anderen Organen dienlich sein können.

Diese Studie konnte nachweisen, dass H₂ durch Einfangen und Neutralisieren von •OH einen effektiven Schutz von Zellen und Gewebe gewährleisten kann. Es bleibt allerdings auch noch die Möglichkeit, dass H₂ auch einen Schutz vor oxidativem Stress bietet, indem es direkt oder indirekt andere stark oxidative Spezies in lebenden Zellen reduziert. So kann H₂ z.B. zellschützende Faktoren anregen bzw. einleiten; wir fanden jedoch keine durch H₂ induzierten Veränderungen in der Expression verschiedener Gene, die bei Reduktionsprozessen oder beim Schutz von Zellen beteiligt sind (K.N., M.I., I.O. und S.O., unveröffentlichte Daten). Weitere Studien werden die Mechanismen offen legen, mittels derer H₂ Zellen und Gewebe vor oxidativem Stress schützt.

Akuter oxidativer Stress kann durch verschiedene Faktoren ausgelöst werden, u.a. Entzündungen, intensive sportliche Belastungen, Herzinfarkt, Unterbrechung der Durchblutung und Organtransplantationen. Zur Behandlung könnte in einer Salzlösung gelöstes H₂ auf einfache Weise intravaskulär (hier: in ein Blutgefäß) verabreicht werden. Zur allgemeinen Vorbeugung vor oxidativem Stress könnte mit H₂ angereichertes Wasser verabreicht werden. Die Inhalation von H₂ wurde bereits bei der Vorbeugung vor der Dekompressionskrankheit bei Tauchern angewandt und zeigte dabei ein gutes Sicherheitsprofil³¹. Beachtenswert ist auch, dass bei H₂ in Konzentrationen unterhalb von 4,7% in der Luft kein Risiko der Entflammbarkeit oder Explosion besteht. Wir unterbreiten deshalb den Vorschlag, dass H₂, eines der bekanntesten Moleküle, als ein sicheres und effektives Antioxidans mit minimalen Nebenwirkungen breite Anwendung bei medizinischen Maßnahmen und Verfahren finden könnte.

METHODEN

Wasserstoff- und Sauerstoff-Messungen. Wir nahmen Messungen der Konzentrationen an gelöstem molekularem Wasserstoff (H₂) und Sauerstoff (O₂) vor, indem wir jeweils eine Wasserstoff-Messelektrode (von ABLE) und eine Sauerstoff-Messelektrode (von Strathkelvin Instruments) verwendeten. Wir bestimmten die Wasserstoff-Gaskonzentration durch Gas-Chromatographie (Teramecs). Um die H₂-Konzentration im Blut zu messen, wurden die im

ARTICLES

Tiermodell eingesetzten Ratten zunächst mit Heparin vorbehandelt, um Blutgerinnungen vorzubeugen. Daraufhin wurden jeweils 5 ml arterielles und venöses Blut in Reagenzgläser gefüllt und die Blutproben unmittelbar danach in verschlossene Aluminiumbeutel gegeben, die 30 ml Luft enthielten. Nachdem das H₂-Gas vollständig aus dem Blut in die Luft im verschlossenen Beutel entwichen war, entnahmen wir 20 ml Luft für die Gas-Chromatographie, um die Konzentration von H₂ zu quantifizieren.

Wasserstoff-Behandlung von kultivierten Zellen. Über eine Zeitraum von zwei Stunden lösten wir H2 über die Sättigungsgrenze hinaus unter einem Druck von 0,4 MPa (4 bar) in einem DMEM-Medium (standardisiertes Nährmedium für Zellkulturen). Wir lösten O2 in einem zweiten Medium durch Einsprudeln von O₂-Gas bis zur Sättigungsgrenze (42,5 mg/l), und CO2 in einem dritten Medium durch Einsprudeln von CO2-Gas. Alle drei Medien wurden auf atmosphärischem Umgebungsluftdruck gehalten. Wir kombinierten dann die drei Medien (H2-Medium : O2-Medium : CO2-Medium) im Volumenverhältnis 75% : 20% : 5% und fügten fetales Kälberserum (FKS, Nährmedium für Zellkulturen) hinzu, um eine Endkonzentration von 1% zu erreichen. Zur Kultivierung fügten wir das kombinierte Medium in eine Zellkulturflasche und überprüften unmittelbar danach die H2- bzw. O2-Konzentration mit einer H2- bzw. O2-Messelektrode. Dann füllten wir die Zellkulturflasche mit einem Gasgemisch, das aus 75% H_2, 20% O_2 und 5% CO2 und kultivierten Zellen in einer geschlossenen Zellkulturflasche bestand. Dann bereiteten wir ein entgastes Medium ohne H2 zu, indem wir das Medium, das mit H2 gesättigt war, für eine Zeitdauer von 4 Stunden in einem offenen Gefäß rührten, und prüften dann die H2-Konzentration mit einer Wasserstoff-Messelektrode. In den Experimenten zur Dosisabhängigkeit von H2 (Resultate in Abb. 2f wiedergegeben) verdünnten wir das kombinierte Medium mit einem vierten Medium mit 1% FKS. äquilibriert (abgeglichen) mit Luft, die 5% CO2 enthielt, um die gewünschte H2- Konzentration zu erhalten. Wir füllten die Zellkulturflaschen dann mit dem Gasgemisch, das mit Luft verdünnt wurde, die 5% CO2 enthielt.

Induktion von oxidativem Stress mit Antimycin A und Menadion. Wir hielten PC12-Zellen bei einer Temperatur von 37°C in einem DMEM-

Welium, das 1% FKS mit bzw. ohne 0,6 mM H₂ in einer geschlossenen Zellkulturflasche enthielt, die mit dem oben beschriebenen Gasgemisch gefüllt wurde. Wir behandelten die Zellen dann mit Menadion bzw. Antimycin A, die jeweils als Inhibitoren des (bereits unter "Ergebnisse" beschriebenen) Komplex I bzw. Komplex III der mitochondrialen Elektronentransportkette fungieren, und produzierten so O_2 .• (durch Beschleunigung des Elektronenaustritts). Nachdem das Antimycin A für eine Zeitdauer von 24 Stunden auf das Medium eingewirkt hatte, überprüften wir das Zellüberleben, indem wir manuell die Zellen zählten, die mit 1 μ M Propidiumjodid doppelt angefärbt waren (tote Zellen in Rosa dargestellt) Abb. 6: Die Inhalation von H2-Gas linderte die Auswirkungen von Hirnschäden nach einer Woche. Im Tiermodell inhalierten Ratten im Verlauf einer 120minütigen Ischämie und Reperfusion Wasserstoff-Gas mit einer Konzentration von 2%, was für einen, drei bzw. sieben Tage aufrechterhalten wurde. (a:) Eine Woche nach der MCA-Okklusion nahmen wir einen Anschnitt der Hirne sowie eine Anfärbung mit Hämatoxylin und Eosin vor. Drei repräsentative Anschnitte werden hier wiedergegeben. Maßstabsbalken: 5 mm. (b:) Infarktvolumina (die schwach rosa gefärbten Regionen in a) wurden berechnet (n = 6). ***P < 0,001. (c:) Ein neurologisches Punktesystem mit einer Skala von 0 bis 5 wurde, wie zuvor beschrieben, zur Auswertung herangezogen27: 0 entspricht keinem neurologischen Defizit; 1 entspricht einem Unvermögen, die rechte Vorderpfote voll auszustrecken; 2 entspricht einer Kreisbewegung nach rechts; 3 entspricht einem Fallen nach rechts; 4 entspricht einer Unfähigkeit, spontan zu laufen, und 5 entspricht dem Ableben des Tiers. Bei der Beurteilung des neurologischen Punktwerts für die jeweilige Ratte zwischen 1 und 2, 2 und 3, oder 3 und 4 wurde der Punktwert jeweils auf 1,5, 2,5 und 3.5 gesetzt. Weiße bzw. schwarze Punkte repräsentieren die Behandlung mit bzw. ohne H_2 (n = 6). ***P < 0,001. (d,e:) Körpergewicht und -temperatur wurden mit (schwarze Punkte) bzw. ohne (weiße Punkte) Inhalation von Wasserstoff-Gas mit einer Konzentration von 2% kontrolliert (n = 6). *P < 0,05, **P < 0,01, ***P < 0.001. (f:) Am dritten bzw. siebten Tag nach der MCA-Okklusion wurden koronale 6-µm-Schnitte aus dem Ischämie-Kernbereich im temporalen Kortex mit Antikörpern zu Iba1 angefärbt. Maßstabsbalken: 200 mm (100 mm in den Einblendungen unten). (g:) Iba1-positive Mikroglia28 pro Sichtfeld wurden im Ischämie-Kernbereich gezählt, wie in f angegeben (n = 6). *P < 0,05. Daten zeigen die durchschnittlichen Standardabweichungen.

und 5 μ M Hoechst 33342 (tote und lebendige Zellen in Blau dargestellt) unter einem Floreszenz-Mikroskop. Um den Schutzeffekt von H₂ auf die Mitochondrien zu untersuchen, nahmen wir für 30 Minuten eine Vorbehandlung der Zellen mit 4,5 g/l 2-Deoxy-D-glucose (einem Glycolyse-Inhibitor) und 1 mM Pyruvat (einem Substrat der oxidativen Phosphorylierung, Anhängen einer Phosphatgruppe an ein organisches Molekül) vor, setzten sie dann Antimycin A mit bzw. ohne 0,6 mM H₂ aus und quantifizieren die zellulären ATP-Konzentrationen unter Verwendung eines zellulären ATP-Mess-Kits (TOYO B-Net.).

Hirninfarkt-Modell. Die Tierprotokolle wurden vom Animal Care and Use Committee of Nippon Medical School genehmigt. Wir narkotisierten männliche Sprague-Dawley-Ratten (Körpergewicht: 250-300 g) mit Halothan (4% zur Einleitung, 1% zur Aufrechterhaltung) in einem Gasgemisch aus Distickstoffmonoxid (N2O) und Sauerstoff (Volumenverhältnis 70% : 30%). Mit einer thermostatgesteuerten Heizdecke in Verbindung mit einer Temperatursonde im Rektum (Mastdarm) hielten wir eine konstante Temperatur von 37,5°C \pm 0,5°C aufrecht und überwachten gleichzeitig die physiologischen Parameter (unter Verwendung einer Kanüle in der Schwanzarterie), einschließlich der Blutgaskonzentrationen (pCO2 und pO2), pH-Wert, Blutzuckerspiegel und Blutdruck. Wir versuchten, konstante Konzentrationen von pH und pO2 aufrechtzuerhalten, indem wir die Menge an Halothan und das Verhältnis von N2O zu O2 kontinuierlich nachregulierten. Wir induzierten eine fokale zerebrale Ischämie, indem wir mit der intraluminalen (im Innern eines Gefäßes liegenden) Fadenverschluss-Technik eine Okklusion der mittleren Zerebralarterie (Hirnarterie, MCA) vornahmen. Dazu verwendeten wir ein Nylon-Monofilament (Einzelfaden) mit abgerundeten Enden und einem distalen (körperfernen) Silikon-Gummizylinder, wie zuvor beschrieben²³. Der 90-minütigen Okklusion der MCA folgte eine Reperfusions-Phase von 30 Minuten. Während des gesamten Ablaufs inhalierten die Ratten H2-Gas, ausgenommen die Experimente, die den Abb. 5d,e entsprechen. Wir behandelten die Ratten mit Edaravon und FK506, wobei wir die effektivsten Konzentrationen einsetzten23,25 (Abb. 5c). Nach dem Wiedererwachen aus der Narkose wurde für die Ratten eine Umgebungstemperatur von 23°C aufrechterhalten.

24 Stunden nach der MCA-Okklusion entfernten wir die Hirne unter Narkose und schnitten sie in sechs koronale sequenzielle Sektionen (jeweils 2 mm dick). Wir färbten die Sektionen mit 2,3,5-Triphenyltetrazoliumchlorid (TTC) (3%) an und nahmen dann Messungen der Infarkt- bzw. Nicht-Infarkt-Bereiche vor, wozu ein optisches Dissektor- (Sezierer-) Bildanalysesystem (Mac Scope, Mitsuya Shoji) verwendet wurde. Wir kennzeichneten die Grenze zwischen Infarkt- und Nicht-Infarkt-Gewebe und gelangten an den Infarktbereich durch Entfernung des nicht verletzten Bereiches der ipsilateralen Hemisphäre (auf derselben Körperseite befindlichen Hirnhälfte) von dem der kontralateralen (auf der entgegengesetzten Seite befindlichen) Hemisphäre. Wir berechneten die Infarktvolumina

nature. medicine

anhand der Formel "Infarktbereich x Dicke". 12 Stunden, 3 bzw. 7 Tage nach der MCA-Okklusion entnahmen wir umgehend die Hirne unter Narkose und fixierten sie mit 10% Formalin. Wir schnitten dann paraffin-eingebettete Hirngewebeproben in eine Reihe von 6 um dicken Sektionen und färbten diese mit Hämatoxylin bzw. Eosin (H&E) an. Dann guantifizieren wir die rosa angefärbten Bereiche mit einem grafischen Analysesystem (Mac Scope). Zur Immunmarkierung färbten wir die Sektionen mit Antikörpern unter Verwendung von VECTASTAIN ABC-Reagenzien (Detektionssysteme für die Immunologie und Molekularbiologie) nach Vorgaben des Anbieters.

Statistische Analyse. Zur Erstellung der statistischen Analysen verwendeten wir die StatView-Software (SAS Institut). Für Einzelvergleiche führten wir einen unpaarigen zweiseitigen Student t-Test durch; für Mehrfachvergleiche führten wir eine Varianzanalyse (ANOVA) gefolgt von einem exakten Fisher-Test durch. Wir führten Experimente zur Quantifizierung in Form einer Blindanalvse durch.

Anmerkung: Weitergehende Informationen sind auf der Webseite des Nature Medicine erhältlich.

DANKSAGUNGEN

Diese Studie wurde durch Zuschussmittel an Shigeo Otah (S.O.) vom japanischen Ministerium für Gesundheit, Arbeit und Soziales gefördert (H17-Chouju-009, "Longevity Science" und 17A-10, "Nervous and Mental Disorders") sowie vom japanischen Ministerium für Bildung, Kultur, Sport, Wissenschaft und Technologie (16390257).

AUTORENBEITRÄGE

S.O. konzipierte die Experimente. S.O., I.O., K.K. und Y.K. gestalteten und entwickelten die Experimente. I.O., S.A. und S.O. nahmen die Datenanalysen vor. I.O., M.I., K.T., M.W., K.N, K.Y., S.A. und S.O. führten die Experimente durch. S.O. und I.O. verfassten die Studie.

ERKLÄRUNG HINSICHTLICH KONKURRIERENDER INTERESSEN

Die Autoren erklären hiermit, keine miteinander konkurrierenden finanziellen Interessen zu verfolgen.

Veröffentlicht online unter: http://www.nature.com/naturemedicine Informationen zu Nachdrucken und Genehmigungen sind online verfügbar unter http://npg.nature.com/Reprintsandpermissions

Quellenangaben (englisch)

- 1. Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39 359-407 (2005)
- Reddy, P.H. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease. J. Neurochem. 96, 1-13 (2006).
- Ohta, S. A multi-functional organelle mitochondrion is involved in cell death, 3 proliferation and disease. Curr. Med. Chem. 10, 2485-2494 (2003).
- Wright, E., Jr., Scism-Bacon, J.L. & Glass, L.C. Oxidative stress in type 2 dia-4 betes: the role of fasting and postprandial glycaemia. Int. J. Clin. Pract. 60, 308–314 (2006).
- Winterbourn, C.C. Biological reactivity and biomarkers of the neutrophil oxidant, 5. hypochlorous acid. Toxicology 181, 223–227 (2002). Chinopoulos, C. & Adam-Vizi, V. Calcium, mitochondria and oxidative stress
- 6. inneuronal pathology. Novel aspects of an enduring theme. FEBS J. 273, 433-450 (2006).
- Sauer, H., Wartenberg, M. & Hescheler, J. Reactive oxygen species as intracel-7. lular messengers during cell growth and differentiation. Cell. Physiol. Biochem. 11. 173–186 (2001).
- 8. Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. (Lond.) 552, 335-344 (2003).
- Sheu, S.S., Nauduri, D. & Anders, M.W. Targeting antioxidants to mitochondria: 9 a new therapeutic direction. Biochim. Biophys. Acta 1762, 256-265 (2006).
- Liu, H., Colavitti, R., Rovira, I.I. & Finkel, T. Redox-dependent transcriptional 10. regulation. Circ. Res. 97, 967–974 (2005).
- Murad, F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci. Rep. 24, 452–474 (2004).
- 12. Buxton, G.V., Greenstock, C.L., Helman, W.P. & Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (_OH/_O-) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513-886 (1988).
- 13. Ohsawa, I., Nishimaki, K., Yasuda, C., Kamino, K. & Ohta, S. Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC12 cells. J. Neurochem. 84, 1110-1117 (2003).

- 14. Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J. & Nagano, T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170-3175 (2003).
- 15. Tomizawa, S. et al. The detection and quantification of highly reactive oxygen species using the novel HPF fluorescence probe in a rat model of focal cerebral ischemia. Neurosci. Res. 53, 304–313 (2005).
- 16. Kamiya, H. Mutagenicities of 8-hydroxyguanine and 2-hydroxyadenine produced by reactive oxygen species. Biol. Pharm. Bull. 27, 475-479 (2004).
- 17. Petersen, D.R. & Doorn, J.A. Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radio. Biol. Med. 37, 937–945 (2004).
 18. Falick, A.M., Mahan, B.H. & Myers, R.J. Paramagnetic resonance spectrum of the 1Dg oxygen molecule. J. Chem. Phys. 42, 1837–1838 (1965).
- Asoh, S. et al. Protection against ischemic brain injury by protein therapeutics. 19.
- Proc. Natl. Acad. Sci. USA 99, 17107-17112 (2002).
- Halestrap, A.P. Calcium, mitochondria and reperfusion injury: a pore way to die. 20. Biochem. Soc. Trans. 34, 232–237 (2006). 21. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).
- 22. Ferrari, R. et al. Oxidative stress during myocardial ischaemia and heart failure. Curr.
- Pharm. Des. 10, 169–1711 (2004). Nito, C., Kamiya, T., Ueda, M., Arii, T. & Katayama, Y. Mild hypothermia enhances 23. the neuroprotective effects of FK506 and expands its therapeutic window following transient focal ischemia in rats. Brain Res. 1008, 179-185 (2004).
- 24. Takada, J. et al. Adenovirus-mediated gene transfer to ischemic brain is augmented in aged rats. Exp. Gerontol. 38, 423-429 (2003).
- 25. Zhang, N. et al. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 36, 2220-2225 (2005).
- 26. Labiche, L.A. & Grotta, J.C. Clinical trials for cytoprotection in stroke. NeuroRx 1, 46-70 (2004).
- 27. Murakami, K. et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J. Neurosci. 18, 205-213 (1998)
- 28. Ito, D. et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res. 57, 1-9 (1998).
- 29. Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.G. & Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. J. Am. Med. Assoc. 297, 842–857 (2007).
- James, A.M., Cocheme, H.M. & Murphy, M.P. Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing. Mech. Ageing Dev. 126, 982-986 (2005).
- 31. Fontanari, P. et al. Changes in maximal performance of inspiratory and skeletal muscles during and after the 7.1-MPa Hydra 10 record human dive. Eur. J. Appl. Physiol. 81, 325-328 (2000)

Zusatz-Abb. 1: In einem Kulturmedium gelöster molekularer Wasserstoff übt keine reduzierende Wirkung auf zelluläres Wasserstoffperoxid und Stickoxid aus.

(a:) PC12-Zellen wurden in ein Medium mit bzw. ohne 0,6 mM H2 eingebracht, und Antimycin A (10 µg/ml) wurde dem Medium hinzugefügt, um die Produktion von O2-• zu induzieren, welches umgehend in H2O2 umgewandelt wurde. Repräsentative konfokale Laser-Raster-Mikroskopaufnahmen der Fluoreszenz des H2O2-Markers 2,7-Dichlorodihydrofluorescein (H2DCF) wurden eine Stunde nach Hinzufügung von Antimycin A angefertigt. Maßstabsbalken: 100 µm. (b:) DCF-Fluoreszenz in mit Antimycin A behandelten Zellen unter An- bzw. Abwesenheit von 0,6 mM H₂ wurde bei jedem eigenständigen Experiment von 100 Zellen quantifiziert, unter Verwendung des NIH-Bildbearbeitungsprogramms (durchschnittliche Standardabweichung, n = 4). (c, d:) Zelluläres NO• wurde nachgewiesen mit einem zellulären NO•spezifischen fluoreszierenden Marker. DAF-2 DA (Diaminofluorescein-2-Diacetat. erworben von Daiichi Pure Chemicals Co.) durch konfokale Laser-Raster-Mikroskopie jeweils unter Verwendung von Anregungs- und Emissionsfiltern bei 488 und 510 nm Wellenlänge. Als negative Kontrolle wurde ein NOS-Synthase-Inhibitor (Nitro-L-Arginin-Methyl-Ester, "L-NAME", erworben von Sigma) hinzugefügt, um die Bildung von NO• zu unterbinden. Maßstabsbalken: 50 µm. (d:) DAF-2 DA-Fluoreszenz wurde wie in (b) beschrieben quantifiziert (durchschnittliche Standardabweichung, n = 5). ***P < 0,001.

Zusatz-Abb. 2: pH-, H₂- und O₂-Konzentrationen bleiben konstant in einem Kulturmedium in einer geschlossenen Zellkulturflasche, die mit einem Gasgemisch gefüllt ist.

Ein DMEM-Kulturmedium mit darin gelöstem H₂ und O₂ wurde wie unter **"Metho-den"** beschrieben angefertigt. PC12-Zellen (5 x 10⁵) wurden im Medium mit bzw. ohne Antimycin A (10 µg/ml) in einer geschlossenen Zellkulturflasche (25 cm²) mit einem Gasgemisch bestehend aus 75% H₂, 20% O₂ und 5% CO₂ kultiviert. Zur angegebenen Zeit wurden die Konzentrationen an pH, H₂ bzw. O₂ im Medium mit einem pH-Wert-Messgerät und mit einer H₂- bzw. O₂-Messelektrode gemessen. Für eine Messung wurde eine Zellkulturflasche herangezogen. Die Daten zeigen die durchschnittliche Standardabweichung (n = 4).

Zusatz-Abb. 3: Mehrere Methoden weisen nach, dass H_2 die Zellen gegen oxidativen Stress schützt.

PC12-Zellen wurden in An- bzw. Abwesenheit von 0,6 mM H2 mit der angegebenen Konzentration von Antimycin A (a, b) bzw. Menadion (c) inkubiert. Wie unter "Methoden" beschrieben, wurden die jeweiligen H2-Konzentrationen für 24 Stunden aufrechterhalten. (a:) Als weitere Methode wurde ein modifizierter MTT-Test (WST-1-Test, Test zur Bestimmung der Zellviabilität) mit einem Zellzähl-Kit (von Wako) durchgeführt, um den Schutzeffekt von H2 gegen oxidativen Stress zu gewährleisten (durchschnittliche Standardabweichung, n = 4). *P < 0,05, **P < 0,01. (b) Laktatdehydrogenase- (LDH) Aktivitäten wurden gemessen, um das Ausmaß der Entweichung bzw. Leckage zellulärer Laktatdehydrogenase (LDH) aus beschädigten Zellen zu bestimmen, und zwar mit einem LDH-Cytotoxic-Testkit (Wako). Die LDH-Aktivität in einem Medium mit Zellen, die nicht mit Antimycin A und H₂ behandelt wurden, wurde als Hintergrund genommen (durchschnittliche Standardabweichung, n = 4). *P < 0,05, **P < 0,01. (c:) Statt Antimycin A wurde Menadion für einen Zeitraum von 24 Stunden zur Auslösung von oxidativem Stress verwendet, und die Anzahl lebendiger Zellen wurde wie in Abb. 2f gezählt (durchschnittliche Standardabweichung, n = 4). **P < 0,01.

Zusatz-Abb. 4: Molekularer Wasserstoff schützt kultivierte Neuronen vor Ischämie und Reperfusion in vitro.

Im Tiermodell mit Ratten wurde eine Primärkultur von neokortikalen Zellen einem Sauerstoff- und Glucose-Entzug (OGD) ausgesetzt, wie unter "Ergänzende Methoden" beschrieben. (a:) Zehn Minuten nach der Reperfusion wurden die Zellen mit HPF angefärbt (links: Fluoreszenz-Bilder: rechts: Überlagerung der HPF-Fluoreszenz-Bilder mit differenziellen Nomarski-Interferenzkontrast-Bildern). "Mock" bedeutet hier, dass Zellen mit einem DMEM-Medium behandelt wurden. das Glucose und Sauerstoff enthielt, statt einem OGD-Entzug ausgesetzt zu werden. Maßstabsbalken: 100 µm. (b:) Die durchschnittliche HPF-Fluoreszenz-Intensität wurde in 100 Zellen gemessen (durchschnittliche Standardabweichung, n = 4). *P < 0,05. (c:) 20 Stunden nach dem OGD-Entzug wurden die noch lebendigen Neuronen mit dem neuronenspezifischen Antikörper zu TUJ-1 (grün) und mit Propidiumjodid (PI, rot) fixiert und immungefärbt. Maßstabsbalken: 100 µm. (d:) Tote Zellen wurden im Anfärbungsprozess ausgewaschen, und lebendige Zellen wurden unter einem Fluoreszenz-Mikroskop in vier Sichtfeldern pro Vertiefung (durchschnittliche Standardabweichung, n = 4) ausgezählt. *P < 0,05. (e:) 20 Stunden nach dem OGD-Entzug wurde die Zellviabilität in einer Vertiefung mittels eines modifizierten MTT-Tests (WST-1-Test) mit einem Zellzähl-Kit bestimmt (durchschnittliche Standardabweichung, n = 4). *P < 0,05.

Zusatz-Abb. 5: Hirndurchblutung wird durch H₂-Inhalation nicht beeinflusst. Wie in "Methoden" beschrieben, wurde eine Okklusion der mittleren Zerebralarterie vorgenommen. Der zerebrale Blutfluss wurde mittels Laser-Doppler-Durchflussmetrie gemessen unter Verwendung eines ALF21 (ADVANCE Co.) 2 mm seitlich des Bregmas (Schnittpunkt von Sagittal- und Koronarnaht am Schädel) für die Penumbra (geschädigtes, aber funktionell noch intaktes Nervengewebe, durchgezogene Linie) und 5 mm seitlich des Bregmas für den ischämischen Kernbereich (gestrichelte Linie). Die Zeitperioden der H₂-Inhalation (2%) und der Okklusion der Zerebralarterie sind jeweils durch graue und durchgehende dicke Linien gekennzeichnet.

Zusatz-Abb. 6: Nach der Induktion der Hirnverletzung durch Ischämie und Reperfusion mit bzw. ohne H₂-Behandlung wurde das Hirn immungefärbt.

Zwölf Stunden (0,5 Tage), 3 bzw. 7 Tage nach der MCA-Okklusion wurden die Hirne fixiert und in Paraffin eingebettet. Koronale 6-µm-Anschnitte wurden mit Antikörpern zu 8-OH-G im Bereich der ischämischen Penumbra im temporalen Kortex angefärbt (a); mit Antikörpern zu HNE im Bereich der ischämischen Penumbra im temporalen Kortex (c), und mit Antikörpern zu GFAP im Bereich der ischämischen Penumbra im okzipitalen (im Hirnhaupt gelegenen) Kortex (e). Maßstabsbalken: 100 µm. Positive Zellen mit Antikörpern zu 8-OH-G (b), HNE (d) und GFAP (f) pro Gesichtsfeld wurden in exakt denselben Regionen in Form einer Blindanalyse gezählt (durchschnittliche Standardabweichung, n = 6). *P < 0,05, **P < 0,01.

Ergänzende Methoden

Nachweis von ROS durch Fluoreszenz-Indikatoren. Wir behandelten PC12-Zellen für 30 Minuten mit 10 µM 5-(und-6)-Chloromethyl-2,7-dichlorodihydrofluorescein-Diacetat, Acetyl-Ester (CM-H2DCFDA, erworben von Molecular Probes), 5 µM Diaminofluorescein-2-Diacetat (DAF-2 DA) (erworben von Daiichi Pure Chemicals Co.) bzw. 5 µM of 2-[6-(4'-Hydroxy)Phenoxy-3H-Xanthen-3-on-9-yl]-Benzoat (HPF, erworben von Daiichi Pure Chemicals Co.), um jeweils zelluläres H2O2, NO• bzw. •OH nachzuweisen. Wir erstellten Fluoreszenz-Bilder durch konfokale Laser-Raster-Mikroskopie (Olympus FV300) jeweils unter Verwendung von Anregungsund Emissionsfiltern bei 488 und 510 nm Wellenlänge. HPF kann durch •OH, Peroxynitrit (ONOO-) und Lipidperoxide spezifisch oxidiert werden, jedoch nicht durch H₂O₂, NO• bzw. O₂-• ¹⁴. Zum Nachweis von zellulärem O2-• verwendeten wir 0,5 µM MitoSOX (erworben von Molecular Probes) und machten Aufnahmen jeweils unter Verwendung von Anregungs- und Emissionsfiltern bei 543 und 565 nm Wellenlänge. Fluoreszenz-Signale wurden in jedem eigenständigen Experiment von 100 Zellen unter Verwendung NIH-Bildbearbeitungssoftware quantifiziert.

Anfärbung von Mitochondrien. Für die Anfärbung von Mitochondrien verwendeten wir MitoTracker Green (MTGreen) (1 μ M, von Molecular Probes) und Tetramethylrhodamin-Methyl-Ester (TMRM) (100 nM, von Molecular Probes). Fluoreszenz von MTGreen ist unabhängig vom Membranpotenzial, wohingegen die von TMRM auf das Membranpotenzial reagiert. MTGreen und TMRM wurden nachgewiesen jeweils unter Verwendung von Anregungsfiltern bei 488 und 543 nm und Emissionsfiltern bei 510 und 565 nm Wellenlänge.

Immunfärbung. Wir erwarben Antikörper gegen HNE und 8-OH-G von Nikken Seil Co. und Antikörper gegen TUJ-1 und GFAP von COVANCE und Thermolmmunon. Wir verwendeten BODIPY FL Goat-Anti-Mouse IgG (von Molecular Probe) als sekundären Antikörper und visualisierten die Signale mit einem konfokalen Laser-Raster-Mikroskop. Die Fluoreszenz-Signale als Reaktion auf 8-OH-G und HNE wurden mit NIH-Bildbearbeitungssoftware quantifiziert.

Intrazelluläre Fenton-Reaktion. Wir präinkubierten PC12-Zellen für 30 Minuten mit 1 mM CuSO₄, das 1% FKS enthielt, wuschen sie dann einmalig mit phosphatgepufferter Salzlösung (PBS), die CaCl₂ (0,1 g/l), MgCl₂ x 6H₂O (0,1 g/l), Glucose (1g/l) und Natriumpyruvat (0,036 g/l) (pH 7,2) enthielt, und setzten sie dann wie oben beschrieben für eine Stunde der angegebenen Konzentration von Ascorbat (Vitamin C) in einer phosphatgepufferten Salzlösung aus. Als Negativkontrollen wurden CuSO₄ bzw. Ascorbat weggelassen. Beachten Sie, dass Cu+² durch das Ascorbat zu Cu+ reduziert wird, welches die Fenton-Reaktion zur Produktion von \cdot OH aus H₂O₂ katalysiert, die spontan in den Zellen stattfindet.

Messung der Elektronenspinresonanz. Wir verwendeten 5,5-Dimethyl-1-pyrrolin-N-oxid (DMPO) als Fänger für freie Radikale und wiesen die Signale der Elektronenspinresonanz (ESR) mit einem KEYCOM ESR-Spektrometer Typ ESR-X01 nach. Als Standardwert für die Reaktion von •OH mit DMPO erzeugten wir durch die Fenton-Reaktion •OH in einem Gemisch aus 0,1 mM H₂O₂ und 1 mM FeCl₂ in Gegenwart von 0,1 mM DMPO und nahmen an der Gesamtlösung eine ESR-Messung vor. Für die Messungen normalisierten wir die Sensitivität eines jeden Experiments mit der Stärke des internen, von Mn2²⁺ abgeleiteten Signals. Um ein Spektrum zu erhalten, wurden die ESR-Signale für 2 Minuten gescannt, dann zehnmal akkumuliert und alle Signale dann gemittelt.

Für die Behandlung mit H2 bereiteten wir ein Medium mit einer Konzentration von 0,6 mM H₂ und 8,5 mg/l O₂ und füllten dies in eine geschlossene Zellkulturflasche mit 75% H2, 20% O2 und 5% CO2-Gas. Wir nahmen eine 30-minütige Vorbehandlung von PC12-Zellen (2 x 106 Zellen in einer 25 cm²-Flasche) mit 0,1 M DMPO und 2 mM CuSO₄ im DMEM-Medium mit 1% FKS bei 37°C in An- bzw. Abwesenheit von 0,6 mM H₂ vor. Nach Entfernung dieses Mediums setzten wir die Zellen für 5 Minuten bei Raumtemperatur 0,2 mM Ascorbat und 0,1 mM H₂O₂ in 0,3 ml PBS in An- bzw. Abwesenheit von 0.6 mM H2 aus, um die Produktion von •OH durch die Fenton-Reaktion einzuleiten, und gaben die Zellen dann zur ESR-Messung in eine flache Küvette. Bei der anderen Methode präinkubierten wir für 7 Minuten bei Raumtemperatur PC12-Zellen (2 x 106 Zellen in einer a 25 cm²-Flasche) in 0,3 ml PBS mit 0,1 M DMPO und 30 µg/ml Antimycin in An- bzw. Abwesenheit von 0,6 mM H₂ und gaben die Zellen dann zur ESR-Messung in eine flache Küvette. Durch digitale Subtraktion eines Spektrums vom anderen erhielten wir ein Differenzspektrum zur Visualisierung der Signale, die durch die H2-Behandlung abgenommen hatten.

Primärkultur. Wir präparierten durch die bereits zuvor beschriebene Methode¹⁹ Primärkulturen von neokortikalen Neuronen von 16 Tage alten Rattenembryos. Das Großhirngewebe wurde von Hirnhäuten gereinigt, zerkleinert und mit einem Protease-Cocktail (SUMILON) behandelt. Nach mechanischer Dissoziation durch Pipettieren resuspendierten wir die Zellen in einem Nervenzell-Kulturmedium (SUMILON) und nahmen dann mit ihnen eine Beschichtung auf Poly-L-lysin-beschichteten Platten mit einer Dichte von 5 x 10⁴ Zellen / cm² vor, wechselten dann zum Neurobasal-Medium (Invitrogen) mit B-27 (Invitrogen) einmal alle drei Tage und verwendeten die Neuronen dann am Tag 11. Einen Tag vor dem OGD-Entzug wechselten wir das Medium zum Neurobasal-Medium mit B-27 minus AO (Invitrogen) und bestätigten die neuronale Identität durch Immunfärbung mit Antikörpern zum Neuronenmarker TUJ-1 sowie dem Astrozytenmarker GFAP. Wir verwendeten dabei für die Experimente nur Präparationen, die über 90% Neuronen enthielten.

Sauerstoff- und Glucose-Entzug (OGD). Zur Einleitung des OGD-Prozesses ersetzten wir das Kulturmedium durch ein DMEM-Medium mit einem Mangel an Glucose, aus dem O₂ entfernt wurde, und zwar durch Einsprudeln eines Gasgemischs aus entweder N₂ (95%) : CO₂ (5%) oder H₂ (95%) : CO₂ (5%) und hielten die Kultur für 60 Minuten bei 30°C unter einer Atmosphäre von entweder N₂ (95%) : CO₂ (5%) oder H₂ (95%) : CO₂ (5%) oder H₂ (95%). Die Behandlung wurde abgeschlossen durch Austausch des Experimentalmediums durch ein Stammkulturmedium und weiterer Inkubation bei 37°C mit Luft, die einen Anteil von 5% CO₂ enthielt.

Reaktion auf H₂ **in zellfreien Systemen.** Wir nahmen eine Fluoreszenz-Spektroskopie mit einem Shimadzu RF-5300PC-Fluoreszenz-Spektrometer vor. Zum Studium von Lösungen lösten wir für eine Zeitdauer von zwei Stunden H₂ in Wasser über die Sättigungsgrenze hinaus unter einem Wasserstoff-Druck von 0,4 MPa und verwendeten sie dann unter atmosphärischen Umgebungsdruckbedingungen. Wir bestimmten die H₂-Konzentrationen bei jedem Experiment mit einer Wasserstoff-Messelektrode.

Um die Reaktion von H₂ mit der oxidierten Form von Cytochrom c , FAD bzw. NAD+ nachzuweisen, inkubierten wir Lösungen mit 10 μ M Cytochrom c, 1 mM FAD bzw. 1mM NAD+ mit bzw. ohne 0,8 mM H₂ bei 23°C für 30 Minuten in einer geschlossenen Küvette und konnten keine Absorptions-Reaktion bei Wellenlängen von jeweils 415, 400 und 340 nm feststellen.

Wir überprüften das Reaktionsvermögen von H₂ mit verschiedenen ROS durch HPF, DAF-2 oder Nitroblau-Tetrazolium (NBT). Wir maßen die Fluoreszenz-Signale von HPF und DAF-2 bei einer Wellenlänge von 515 nm mit Anregung bei jeweils 490 und 495 nm und die Reduktion von NBT zu NBT-Diformazan durch Absorption bei 550 nm.

Um die Reaktion von H₂ mit •OH nachzuweisen, mischten wir eine Wasserstoff-Lösung, einen Phosphat-Puffer (10 mM bei pH 7,4), Eisenperchlorat (0,1 mM) und HPF (0,4 μ M). Wir leiteten die Fenton-Reaktion ein durch Hinzufügung von H₂O₂ zu einer Endkonzentration von 5 μ M in einer geschlossenen Küvette bei einer Temperatur von 23°C unter leichtem Rühren und einer 30-sekündigen Fluoreszenz-Messung.

Um die Reaktion von H₂ mit O₂• zu messen, mischten wir Lösungen von Xanthin und NBT (von TREVIGEN) mit bzw. ohne 0,8 mM H₂ in einer geschlossenen Küvette, leiteten die Reaktion ein durch Hinzufügung von Xanthin-Oxidase bei 23°C und überprüften die Reaktion für einen Zeitraum von 5 Minuten.

Um die Reaktion von H₂ mit H₂O₂ nachzuweisen, inkubierten wir Lösungen mit Phosphat-Puffer (10 mM bei pH 7,4) und H₂O₂ (10 μ M) mit bzw. ohne H₂ (0,8 mM) in einer geschlossenen Glasröhre bei 23°C für 30 Minuten. Wir wandelten das verbliebene H₂O₂ zu •OH durch 0,2 μ M Meerrettich-Peroxidase um und inkubierten dann mit 10 μ M HPF für 5 Minuten.

Um die Reaktion von H₂ mit NO• nachzuweisen, inkubierten wir Lösungen mit Phosphat-Puffer (10 mM bei pH 7,4) und 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazen (NOC7, 0,1 μ M, von Dojin Chemicals Co.) mit bzw. ohne 0,8 mM H₂ in einer geschlossenen Küvette bei 23°C für 30 Minuten und prüften die Konzentration an verbliebenem NO• durch Inkubation mit 5 μ M DAF-2 für 10 Minuten.

Um die Reaktion von H_2 mit Peroxynitrit (ONOO⁻) nachzuweisen, verdünnten wir eine Stammlösung von 1 μM ONOO⁻ 200-fach in einem alkalischen Medium und einem 10 mM

Phosphat-Puffer mit 0,4 μM HPF in An- bzw. Abwesenheit von 0,8 mM H_2 und prüften die HPF-Signale bei 23°C für 1 Minute.

ERGÄNZUNGSTABELLE 1

Physiologische Parameter während der zerebralen Ischämie bzw. Reperfusion

preischemia							ischemia									
0% H ₂							0% H ₂									
No.	temp. (°C)	pН	pCO ₂	pO2	glucose (mg/dl)	pressure (mmHg)	No.	temp. (°C)	pН	pCO ₂	pO2	glucose (mg/dl)	pressure (mmHg)			
1	37.4	7.47	39	107	120	110	1	37.4	7.42	44	89	130	145			
2	37.5	7.39	51	113	114	95	2	37.1	7.40	51	98	117	120			
3	37.5	7.47	43	109	119	108	3	37.4	7.44	47	115	115	130			
4	37.4	7.46	43	134	120	110	4	37.0	7.42	48	119	117	150			
5	37.1	7.44	40	109	103	110	5	37.5	7.42	42	113	105	150			
6	37.2	7.45	39	125	110	120	6	37.5	7.44	41	112	105	153			
Average	37.4	7.45	43	116	114	109	Average	37.3	7.42	46	108	115	141			
S.D.	0.2	0.03	5	11	7	8	S.D.	0.2	0.02	4	12	9	13			
2% H ₂	2% H ₂							2% H ₂								
1	37.1	7.45	46	130	109	105	1	37.3	7.41	48	111	120	120			
2	37.4	7.44	50	118	104	87	2	37.6	7.43	43	99	97	135			
3	37.7	7.40	46	105	114	103	3	37.8	7.42	45	104	100	150			
4	36.9	7.45	47	121	107	100	4	37.0	7.39	52	97	105	150			
5	37.5	7.46	41	120	109	100	5	37.3	7.41	45	109	107	145			
6	37.0	7.46	45	114	107	115	6	37.5	7.42	47	108	113	160			
Average	37.3	7.44	46	118	108	102	Average	37.4	7.41	47	105	107	143			
S.D.	0.3	0.02	3	8	3	9	S.D.	0.3	0.01	3	6	8	14			
4% H ₂							4% H ₂									
1	37.6	7.48	36	118	113	120	1	37.0	7.40	48	110	105	145			
2	37.2	7.45	40	134	96	112	2	36.8	7.40	46	107	94	120			
3	37.6	7.46	43	119	90	125	3	37.0	7.41	47	83	91	130			
4	36.7	7.46	39	128	103	120	4	37.6	7.43	43	111	97	145			
5	36.8	7.43	45	111	97	120	5	37.4	7.45	44	105	100	140			
6	37.5	7.49	34	127	103	100	6	37.4	7.44	46	110	105	150			
Average	37.2	7.46	40	123	100	116	Average	37.2	7.42	46	104	99	138			
S.D.	0.4	0.02	4	8	8	9	S.D.	0.3	0.02	0	11	6	11			

	min		reperfusion for 30 min										
0% H ₂							0% H ₂						
No.	temp.	pН	pCO ₂	pO2	glucose	pressure	No.	temp.	pН	pCO ₂	0	glucose	pressure
	(°C)				(mg/dl)	(mmHg)		(°C)			pO ₂	(mg/dl)	(mmHg)
1	37.3	7.39	45	101	132	155	1	37.5	7.41	41	110	135	140
2	37.2	7.40	52	94	108	135	2	37.4	7.40	49	97	111	130
3	37.3	7.46	44	105	113	135	3	37.0	7.40	51	109	115	118
4	37.5	7.43	46	119	116	153	4	37.5	7.42	46	99	118	135
5	37.2	7.40	44	122	104	155	5	37.1	7.43	40	134	105	130
6	37.7	7.41	43	107	105	140	6	37.7	7.35	50	93	97	110
Average	37.4	7.42	46	108	113	146	Average	37.4	7.40	46	107	114	127
S.D.	0.2	0.03	3	11	10	10	S.D.	0.3	0.03	5	15	13	11
2% H ₂							2% H ₂						
1	37.5	7.42	42	107	120	120	1	37.4	7.39	45	116	115	100
2	37.5	7.41	45	98	100	95	2	37.4	7.43	42	97	103	90
3	37.2	7.40	46	109	111	150	3	37.0	7.38	48	117	112	150
4	37.4	7.39	49	100	110	108	4	37.3	7.36	53	109	110	110
5	37.3	7.40	45	108	107	130	5	37.5	7.37	46	119	107	95
6	37.1	7.39	49	113	105	130	6	37.2	7.38	51	115	109	125
Average	37.3	7.40	46	106	109	122	Average	37.3	7.39	48	112	109	112
S.D.	0.2	0.01	3	6	7	19	S.D.	0.18	0.02	4	8	4	23
4% H ₂							4% H ₂						
1	37.4	7.39	49	103	111	140	1	37.1	7.43	37	142	107	125
2	37.3	7.36	49	93	96	120	2	37.4	7.29	41	133	96	112
3	37.4	7.39	46	90	92	135	3	37.5	7.39	47	93	90	135
4	37.4	7.41	45	113	96	145	4	37.4	7.39	45	134	100	130
5	37.1	7.43	45	107	98	140	5	37.1	7.40	44	138	100	125
6	37.3	7.42	44	120	97	150	6	37.1	7.40	47	143	94	140
Average	37.3	7.40	46	104	98	138	Average	37.3	7.38	44	131	98	128
S.D.	0.12	0.03	2	12	7	10	S.D.	0.19	0.05	4	19	6	10

© Copyright 2017 der deutschen Übersetzung by Andreas Zantop, Berlin im Auftrag der Echo Germany GmbH, www.echo-h2.de

Urheberrecht:

"Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte vorbehalten."

Der Autor ist bestrebt, in allen Publikationen die Urheberrechte der verwendeten Texte zu beachten, von ihm selbst erstellte Texte zu nutzen oder auf lizenzfreie Texte zurückzugreifen. Sollte sich auf den jeweiligen Seiten dennoch eine ungekennzeichnete, aber durch fremdes Copyright geschützte Grafik, oder Text befinden, so konnte das Copyright vom Autor nicht festgestellt werden. Im Falle einer solchen unbeabsichtigten Copyrightverletzung wird der Autor das entsprechende Objekt nach Benachrichtigung aus seiner Publikation entfernen bzw. mit dem entsprechenden Copyright kenntlich machen.

Englisch: "The copying, distribution and utilization of this document as well as the communication of its contents to others without expressed authorization is prohibited. Offenders will be held liable for the payment of damages.

All rights reserved."